281 research outputs found

    A BIM-based PSS approach for the management of maintenance operations of building equipment

    Get PDF
    The service-centered economy has grown considerably in the last few years, shifting from product-based solutions towards service centered offerings, i.e., Product-Service System (PSS) solutions. Such an approach is also emerging in the context of building equipment, where maintenance activities play a fundamental role in facility management. In this field, Building Information Modeling (BIM) based tools are diffusely used to improve the performances of facility management. However, few studies have addressed the above issues while considering a shift from product-based approaches in favor of more advanced servitization models. The study aims at integrating BIM based approaches in a PSS context for the improvement of the management of maintenance operations of building equipment. A general framework for maintenance management has been developed, merging the implementation of the PSS components in a BIM model for the definition of maintenance management. A first application of this methodology to a real case study concerning the elevators of an existing building has shown the efficacy of the proposed approach. The study highlighted the benefits that can be achieved, especially in terms of reduced periods of equipment unavailability, reduced costs and augmented customer satisfaction, while enhancing the information exchange between the PSS actors. Hence, although further research is still needed for its validation, the proposed approach can offer practical insights for the development of promising BIM-based PSS solutions for facility management in the construction industry

    Editorial: Mitochondrial dysfunction and cardiovascular diseases

    Get PDF
    A deeper understanding of the molecular mechanisms underlying the development and progression of cardiovascular diseases represents a major goal in cardiovascular medicine. Mitochondrial dysfunction has emerged as major player in the development of cardiovascular diseases, with potential therapeutic implications. Mitochondrial dysfunction encompasses mitochondrial complex disruption, mitochondrial uncoupling, and cristae remodeling and swelling, which in turn cause ROS accumulation, energy stress, and cell death

    Butyrate prevents visceral adipose tissue inflammation and metabolic alterations in a Friedreich's ataxia mouse model

    Get PDF
    Friedreich's ataxia (FA) is a neurodegenerative disease resulting from a mutation in the FXN gene, leading to mitochondrial frataxin deficiency. FA patients exhibit increased visceral adiposity, inflammation, and heightened diabetes risk, negatively affecting prognosis. We investigated visceral white adipose tissue (vWAT) in a murine model (KIKO) to understand its role in FA-related metabolic complications. RNAseq analysis revealed altered expression of inflammation, angiogenesis, and fibrosis genes. Diabetes like traits, including larger adipocytes, immune cell infiltration, and increased lactate production, were observed in vWAT. FXN downregulation in cultured adipocytes mirrored vWAT diabetes-like features, showing metabolic shifts toward glycolysis and lactate production. Metagenomic analysis indicated a reduction in fecal butyrate-producing bacteria, known to exert antidiabetic effects. A butyrate-enriched diet restrained vWAT abnormalities and mitigated diabetes features in KIKO mice. Our work emphasizes the role of vWAT in FA-related metabolic issues and suggests butyrate as a safe and promising adjunct for FA management

    Ejection of damaged mitochondria and their removal by macrophages ensure efficient thermogenesis in brown adipose tissue

    Get PDF
    Recent findings have demonstrated that mitochondria can be transferred between cells to control metabolic homeostasis. Although the mitochondria of brown adipocytes comprise a large component of the cell volume and undergo reorganization to sustain thermogenesis, it remains unclear whether an intercellular mitochondrial transfer occurs in brown adipose tissue (BAT) and regulates adaptive thermogenesis. Herein, we demonstrated that thermogenically stressed brown adipocytes release extracellular vesicles (EVs) that contain oxidatively damaged mitochondrial parts to avoid failure of the thermogenic program. When re-uptaken by parental brown adipocytes, mitochondria-derived EVs reduced peroxisome proliferator-activated receptor-γ signaling and the levels of mitochondrial proteins, including UCP1. Their removal via the phagocytic activity of BAT-resident macrophages is instrumental in preserving BAT physiology. Depletion of macrophages in vivo causes the abnormal accumulation of extracellular mitochondrial vesicles in BAT, impairing the thermogenic response to cold exposure. These findings reveal a homeostatic role of tissue-resident macrophages in the mitochondrial quality control of BAT

    Plasma Levels of Transforming Growth Factor-β1 Reflect Left Ventricular Remodeling in Aortic Stenosis

    Get PDF
    Background: TGF-b1 is involved in cardiac remodeling through an auto/paracrine mechanism. The contribution of TGF-b1 from plasmatic source to pressure overload myocardial remodeling has not been analyzed. We investigated, in patients with valvular aortic stenosis (AS), and in mice subjected to transverse aortic arch constriction (TAC), whether plasma TGF-b1 relates with myocardial remodeling, reflected by LV transcriptional adaptations of genes linked to myocardial hypertrophy and fibrosis, and by heart morphology and function. Methodology/Principal Findings: The subjects of the study were: 39 patients operated of AS; 27 healthy volunteers; 12 mice subjected to TAC; and 6 mice sham-operated. Myocardial samples were subjected to quantitative PCR. Plasma TGF-b1 was determined by ELISA. Under pressure overload, TGF-b1 plasma levels were significantly increased both in AS patients and TAC mice. In AS patients, plasma TGF-b1 correlated directly with aortic transvalvular gradients and LV mass surrogate variables, both preoperatively and 1 year after surgery. Plasma TGF-b1 correlated positively with the myocardial expression of genes encoding extracellular matrix (collagens I and III, fibronectin) and sarcomeric (myosin light chain-2, b-myosin heavy chain) remodelling targets of TGF-b1, in TAC mice and in AS patients. Conclusions/Significance: A circulating TGF-b1-mediated mechanism is involved, in both mice and humans, in the excessive deposition of ECM elements and hypertrophic growth of cardiomyocytes under pressure overload. The possible value of plasma TGF-b1 as a marker reflecting preoperative myocardial remodeling status in AS patients deserves further analysis in larger patient cohorts

    Role of water in Protein Aggregation and Amyloid Polymorphism

    Full text link
    A variety of neurodegenerative diseases are associated with the formation of amyloid plaques. Our incomplete understanding of this process underscores the need to decipher the principles governing protein aggregation. Most experimental and simulation studies have been interpreted largely from the perspective of proteins: the role of solvent has been relatively overlooked. In this Account, we provide a perspective on how interactions with water affect folding landscapes of Aβ\beta monomers, Aβ1622\beta_{16-22} oligomer formation, and protofilament formation in a Sup35 peptide. Simulations show that the formation of aggregation-prone structures (N^*) similar to the structure in the fibril requires overcoming high desolvation barrier. The mechanism of protofilament formation in a polar Sup35 peptide fragment illustrates that water dramatically slows down self-assembly. Release of water trapped in the pores as water wires creates protofilament with a dry interface. Similarly, one of the main driving force for addition of a solvated monomer to a preformed fibril is the entropy gain of released water. We conclude by postulating that two-step model for protein crystallization must also hold for higher order amyloid structure formation starting from N^*. Multiple N^* structures with varying water content results in a number of distinct water-laden polymorphic structures. In predominantly hydrophobic sequences, water accelerates fibril formation. In contrast, water-stabilized metastable intermediates dramatically slow down fibril growth rates in hydrophilic sequences.Comment: 27 pages, 4 figures; Accounts of Chemical Research, 201

    Hypercholesterolemia downregulates autophagy in the rat heart

    Get PDF
    Background: We have previously shown that efficiency of ischemic conditioning is diminished in hypercholesterolemia and that autophagy is necessary for cardioprotection. However, it is unknown whether isolated hypercholesterolemia disturbs autophagy or the mammalian target of rapamycin (mTOR) pathways. Therefore, we investigated whether isolated hypercholesterolemia modulates cardiac autophagy-related pathways or programmed cell death mechanisms such as apoptosis and necroptosis in rat heart. Methods: Male Wistar rats were fed either normal chow (NORM; n=9) or with 2% cholesterol and 0.25% cholic acid-enriched diet (CHOL; n=9) for 12 weeks. CHOL rats exhibited a 41% increase in plasma total cholesterol level over that of NORM rats (4.09mmol/L vs. 2.89mmol/L) at the end of diet period. Animals were sacrificed, hearts were excised and briefly washed out. Left ventricles were snap-frozen for determination of markers of autophagy, mTOR pathway, apoptosis, and necroptosis by Western blot. Results: Isolated hypercholesterolemia was associated with a significant reduction in expression of cardiac autophagy markers such as LC3-II, Beclin-1, Rubicon and RAB7 as compared to controls. Phosphorylation of ribosomal S6, a surrogate marker for mTOR activity, was increased in CHOL samples. Cleaved caspase-3, a marker of apoptosis, increased in CHOL hearts, while no difference in the expression of necroptotic marker RIP1, RIP3 and MLKL was detected between treatments. Conclusions: This is the first comprehensive analysis of autophagy and programmed cell death pathways of apoptosis and necroptosis in hearts of hypercholesterolemic rats. Our data show that isolated hypercholesterolemia suppresses basal cardiac autophagy and that the decrease in autophagy may be a result of an activated mTOR pathway. Reduced autophagy was accompanied by increased apoptosis, while cardiac necroptosis was not modulated by isolated hypercholesterolemia. Decreased basal autophagy and elevated apoptosis may be responsible for the loss of cardioprotection reported in hypercholesterolemic animals

    Stability and Release Kinetics of an Advanced Gliclazide-Cholic Acid Formulation: The Use of Artificial-Cell Microencapsulation in Slow Release Targeted Oral Delivery of Antidiabetics

    Get PDF
    Introduction: In previous studies carried out in our laboratory, a bile acid (BA) formulation exerted a hypoglycaemic effect in a rat model of type-1 diabetes (T1D). When the antidiabetic drug gliclazide (G) was added to the bile acid, it augmented the hypoglycaemic effect. In a recent study, we designed a new formulation of gliclazide-cholic acid (G-CA), with good structural properties, excipient compatibility and exhibits pseudoplastic-thixotropic characteristics. The aim of this study is to test the slow release and pH-controlled properties of this new formulation. The aim is also to examine the effect of CA on G release kinetics at various pH values and different temperatures. Method: Microencapsulation was carried out using our Buchi-based microencapsulating system developed in our laboratory. Using sodium alginate (SA) polymer, both formulations were prepared: G-SA (control) and G-CA-SA (test) at a constant ratio (1:3:30), respectively. Microcapsules were examined for efficiency, size, release kinetics, stability and swelling studies at pH 1.5, pH 3, pH 7.4 and pH 7.8 and temperatures of 20 and 30 °C. Results: The new formulation is further optimised by the addition of CA. CA reduced microcapsule swelling of the microcapsules at pH 7.8 and pH 3 at 30 °C and pH 3 at 20 °C, and, even though microcapsule size remains similar after CA addition, percent G release was enhanced at high pH values (pH 7.4 and pH 7.8, p < 0.01). Conclusion: The new formulation exhibits colon-targeted delivery and the addition of CA prolonged G release suggesting its suitability for the sustained and targeted delivery of G and CA to the lower intestine

    Natriuretic peptide activation of extracellular regulated kinase 1/2 (ERK1/2) pathway by particulate guanylyl cyclases in GH3 somatolactotropes.

    Get PDF
    The natriuretic peptides, Atrial-, B-type and C-type natriuretric peptides (ANP, BNP, CNP), are regulators of many endocrine tissues and exert their effects predominantly through the activation of their specific guanylyl cyclase receptors (GC-A and GC-B) to generate cGMP. Whereas cGMP-independent signalling has been reported in response to natriuretic peptides, this is mediated via either the clearance receptor (Npr-C) or a renal-specific NPR-Bi isoform, which both lack intrinsic guanylyl cyclase activity. Here, we report evidence of GC-B-dependent cGMP-independent signalling in pituitary GH3 cells. Stimulation of GH3 cells with CNP resulted in a rapid and sustained enhancement of ERK1/2 phosphorylation (P-ERK1/2), an effect that was not mimicked by dibutryl-cGMP. Furthermore, CNP-stimulated P-ERK1/2 occurred at concentrations below that required for cGMP accumulation. The effect of CNP on P-ERK1/2 was sensitive to pharmacological blockade of MEK (U0126) and Src kinases (PP2). Silencing of the GC-B1 and GC-B2 splice variants of the GC-B receptor by using targeted short interfering RNAs completely blocked the CNP effects on P-ERK1/2. CNP failed to alter GH3 cell proliferation or cell cycle distribution but caused a concentration-dependent increase in the activity of the human glycoprotein α-subunit promoter (αGSU) in a MEK-dependent manner. Finally, CNP also activated the p38 and JNK MAPK pathways in GH3 cells. These findings reveal an additional mechanism of GC-B signalling and suggest additional biological roles for CNP in its target tissues

    Involvement of Autophagy in Cardiac Remodeling in Transgenic Mice with Cardiac Specific Over-Expression of Human Programmed Cell Death 5

    Get PDF
    Programmed cell death 5 (PDCD5) is a cytosolic protein suppressing growth of multiple types of cancer cells through activating p53. We hypothesized that PDCD5 plays an essential role in cardiac remodeling and function. PDCD5 was significantly up-regulated in the hearts from mice subjected to angiotensin II treatment or transverse aortic constriction. Thus, we generated transgenic mice over-expressing human PDCD5 under the control of alpha myosin heavy chain promoter to examine the role of PDCD5 in cardiac remodeling. Transgenic founder died spontaneously displayed enlarged heart. The high PDCD5 over-expressing line (10-fold) showed reduced survival rate, increase in heart weight normalized to body weight. Real-Time RT-PCR analysis revealed fetal gene program was up-regulated. Echocardiography and histopathological examination showed characteristics of dilated cardiomyopathy and heart failure in transgenic mice. Western blot and immunohistochemistry analysis showed autophagy was dramatically increased in transgenic mice as compared to WT littermates control mice, while apoptosis remained unchanged. The enhanced autophagy in high over-expressing line was associated with significant increase in p53 activity and its downstream target damage-regulated autophagy modulator expression. The low over-expressing line (3.5-fold) appeared normal, but was more susceptible to angiotensin II-induced cardiac hypertrophy. This study is the first providing evidence that PDCD5 plays an important role in cardiac remodeling
    corecore